
django-drf-filepond Documentation

Jeremy Cohen

Dec 05, 2022

Contents:

1 Introduction 1

2 Installation 3
2.1 Configuration . 3

3 Using the library 9
3.1 Working with file uploads . 9

4 Tutorial 13
4.1 Tutorial Part A: Building a basic Django application that uses django-drf-filepond 13
4.2 Tutorial Part B: Using remote file storage . 17

i

ii

CHAPTER 1

Introduction

django-drf-filepond is a Django app providing a back-end implementation for pqina’s excellent filepond file upload
library.

django-drf-filepond can be easily added to your Django applications to provide support for handling file uploads from
a filepond client. The app includes support for filepond’s process, patch, revert, fetch, restore and load
endpoints allowing all the core file upload functions of the library to be used.

django-drf-filepond provides support for managing the storage of files once they have been uploaded using filepond so
that they can subsequently be accessed using filepond’s load endpoint.

Support is provided for storage on remote storage backends via integration with the django-storages library.

Support is also provided for filepond’s chunked file upload, functionality.

1

https://github.com/ImperialCollegeLondon/django-drf-filepond
https://www.djangoproject.com/
https://github.com/pqina/
https://pqina.nl/filepond/
https://django-storages.readthedocs.io/en/latest/

django-drf-filepond Documentation

2 Chapter 1. Introduction

CHAPTER 2

Installation

The app can be installed from PyPi:

pip install django-drf-filepond

or add it to your list of dependencies in a requirements.txt file.

2.1 Configuration

There are three required configuration updates to make within your Django application to set up django-drf-filepond.
A number of additional configuration options may be specified if you’re using optional features:

2.1.1 1. Add the app to INSTALLED_APPS:

Add ‘django-drf-filepond’ to INSTALLED_APPS in your Django settings file (e.g. settings.py):

...

INSTALLED_APPS = [
...,
'django_drf_filepond'

]

...

You will need to re-run python manage.py migrate to update the database with the table(s) used by django-
drf-filepond.

3

django-drf-filepond Documentation

2.1.2 2. Set the temporary file upload location:

Set the location where you want django-drf-filepond to store temporary file uploads by adding the
DJANGO_DRF_FILEPOND_UPLOAD_TMP configuration variable to your settings file, e.g.:

import os
...
DJANGO_DRF_FILEPOND_UPLOAD_TMP = os.path.join(BASE_DIR, 'filepond-temp-uploads')
...

Note: It is strongly recommended that you set DJANGO_DRF_FILEPOND_UPLOAD_TMP. If you do not set
this variable, the app will set a default location for the storage of temporary uploads. This is BASE_DIR/
filepond_uploads where BASE_DIR is the variable defined by default in an auto-generated Django settings
file pointing to the top-level directory of your Django project. If your settings do not contain BASE_DIR the app will
default to storing the filepond_uploads directory in the django-drf-filepond app directory, wherever
that is located. Note that this may be within the lib directory of a virtualenv.

Note: If you wish to set your file upload location to an directory outside of your Django application, i.e. something
that is not below BASE_DIR, you should consider any security implications that may result from letting the app write
to another location on disk and set the DJANGO_DRF_FILEPOND_ALLOW_EXTERNAL_UPLOAD_DIR to True to
confirm that you want to use a directory external to your application to store temporary uploads.

2.1.3 3. Include the app urls into your main url configuration

Add the URL mappings for django-drf-filepond to your URL configuration in urls.py:

from django.conf.urls import url, include

urlpatterns = [
...
url(r'^fp/', include('django_drf_filepond.urls')),

]

On the client side, you need to set the endpoints of the process, revert, fetch, load and restore functions
to match the endpoint used in your path statement above. For example if the first parameter to url is ^fp/ then
the endpoint for the process function will be /fp/process/. For example, your client-side configuration may
include configuration similar to the following:

FilePond.setOptions({
...
server: {

url: 'https://<your app domain>/fp',
process: '/process/',
patch: '/patch/',
revert: '/revert/',
fetch: '/fetch/?target=',
load: '/load/'

}
...

});

See the filepond server configuration documentation for further examples.

4 Chapter 2. Installation

https://pqina.nl/filepond/docs/patterns/api/server/

django-drf-filepond Documentation

2.1.4 (Optional) 4. File storage configuration

Initially, uploaded files are stored in a temporary staging area (the location you set in item 2 above, with the
DJANGO_DRF_FILEPOND_UPLOAD_TMP parameter. At this point, an uploaded file is still shown in the filepond
UI on the client and the user can choose to cancel the upload resulting in the file being deleted from temporary storage
and the upload being cancelled. When a user confirms a file upload, e.g. by submitting the form in which the filepond
component is embedded, any temporary uploads need to be moved to a permanent storage location.

There are three different options for file storage:

• Use a location on a local filesystem on the host server for file storage (see Section 4.1)

• *NEW* Use a remote file storage backend via the django-storages library (see Section 4.2)

• Manage file storage yourself, independently of django-drf-filepond (in this case, filepond load functionality is
not supported)

More detailed information on handling file uploads and using the django-drf-filepond API to store them is provided in
Working with file uploads.

4.1 Storage of filepond uploads using the local file system

To use the local filesystem for storage, you need to specify where to store files. Set the
DJANGO_DRF_FILEPOND_FILE_STORE_PATH parameter in your Django application settings file to spec-
ify the base location where stored uploads will be placed, e.g.:

...
DJANGO_DRF_FILEPOND_FILE_STORE_PATH = os.path.join(BASE_DIR, 'stored_uploads')
...

The specified path for each stored upload will then be created relative to this location. For ex-
ample, given the setting shown above, if BASE_DIR were /tmp/django-drf-filepond, then a
temporary upload with the specified target location of either /mystoredupload/uploaded_file.
txt or mystoredupload/uploaded_file.txt would be stored to /tmp/django-drf-filepond/
stored_uploads/mystoredupload/uploaded_file.txt

When using local file storage, DJANGO_DRF_FILEPOND_FILE_STORE_PATH is the only required setting.

4.2 Remote storage of filepond uploads via django-storages

The django-storages library provides support for a number of different remote file storage backends. The django-
storages documentation lists the supported backends.

To enable django-storages support for django-drf-filepond, set the DJANGO_DRF_FILEPOND_STORAGES_BACKEND
parameter in your application configuration to the django-storages backend that you wish to use. You need to specify
the fully-qualified class name for the storage backend that you want to use. This is the same value that would be used
for the django-storages DEFAULT_FILE_STORAGE parameter and the required value can be found either by looking
at the django-storages documentation for the backend that you want to use, or by looking at the code in GitHub.

For example, if you want to use the SFTP storage backend, add the following to your application settings:

...
DJANGO_DRF_FILEPOND_STORAGES_BACKEND = 'storages.backends.sftpstorage.SFTPStorage'
...

or, for the Amazon S3 backend:

2.1. Configuration 5

https://django-storages.readthedocs.io/en/latest
https://github.com/jschneier/django-storages
https://django-storages.readthedocs.io/en/latest
https://django-storages.readthedocs.io/en/latest
https://django-storages.readthedocs.io/en/latest
https://github.com/jschneier/django-storages/tree/master/storages/backends

django-drf-filepond Documentation

...
DJANGO_DRF_FILEPOND_STORAGES_BACKEND = 'storages.backends.s3boto3.S3Boto3Storage'
...

For the Azure Storage backend, set:

...
DJANGO_DRF_FILEPOND_STORAGES_BACKEND = 'storages.backends.azure_storage.AzureStorage'
...

For the Google Cloud Storage backend, set:

...
DJANGO_DRF_FILEPOND_STORAGES_BACKEND = 'storages.backends.gcloud.GoogleCloudStorage'
...

django-storages provides support for several other storage backends including Digital Ocean and Dropbox.

For each storage backend, there are a number of additional django-storages configuration options that must be speci-
fied. These are detailed in the django-storages documentation. The specific set of parameters that you need to provide
depends on your chosen storage backend configuration.

As an example, if you are using the Amazon S3 storage backend and want to store uploads into a bucket named
filepond-uploads in the eu-west-1 region, with the bucket and files set to be accessible only by the user specified using
the access/secret key, you would provide the following set of parameters in your application’s settings.py file:

DJANGO_DRF_FILEPOND_STORAGES_BACKEND = 'storages.backends.s3boto3.S3Boto3Storage'
AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID')
AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY')
AWS_S3_REGION_NAME = 'eu-west-1'
AWS_STORAGE_BUCKET_NAME = 'filepond-uploads'
AWS_DEFAULT_ACL = 'private'
AWS_BUCKET_ACL = 'private'
AWS_AUTO_CREATE_BUCKET = True

Note that the ACL for the bucket and the default ACL for files are set to private. There may well be other security-
related parameters that you will want/need to set to ensure the security of the files on your chosen storage backend.
The configuration here provides an example but you should read the django-storages docuemntation for your chosen
backend and documentation for the associated storage platform to ensure that you understand the parameters that you
are setting and any related potential security issues that may result from your configuration.

Note: django-storages is now included as a core dependency of django-drf-filepond. However, the different django-
storages backends each have their own additional dependencies which you need to install manually or add to your
own app’s dependencies.

You can add additional dependencies using pip by specifying the optional extras feature tag, e.g. to install additional
dependencies required for django-storages boto3 support run:

pip install django-storages[boto3]

See “Working with file uploads” for more details on how to use the django-drf-filepond API to store files to a local or
remote file store.

Note: DJANGO_DRF_FILEPOND_FILE_STORE_PATH is not used when using a remote file store backend. It is
recommended to remove this setting or leave it set to None.

6 Chapter 2. Installation

https://django-storages.readthedocs.io/en/latest/backends/digital-ocean-spaces.html
https://django-storages.readthedocs.io/en/latest/backends/dropbox.html

django-drf-filepond Documentation

The base storage location for a remote file storage backend from django-storages is set using a setting specific to the
backend that you are using - see the django-storages documentation for your chosen backend for further information.

2.1.5 Chunked uploads

django-drf-filepond now supports filepond chunked uploads. To use chunked uploads, you enable the func-
tionality in your configuration of the filepond client and set the file chunk size you’d like to use. When filepond
attempts to upload a file larger than the chunk size, it breaks the file up into chunks which are each uploaded in order.
If the connection should fail and a chunk doesn’t upload correctly, the client will retry the chunk. If the set number of
retries is exceeded, the client stops attempting to retry the upload but provides the user with a retry button to manually
retry the upload. django-drf-filepond includes all the necessary server-side functionality to support this.

There is no configuration required for django-drf-filepond on the server side to handle chunked uploads.

On the client side, you need to ensure that your filepond configuration specifies server endpoints for both the process
and patch methods and that you have the required configuration options in place to enable chunked uploads. For ex-
ample, if you want to enable chunkUploads and send uploads in 500,000 byte chunks, your filepond configuration
should include properties similar to the following:

FilePond.setOptions({
...
chunkUploads: true,
chunkSize: 500000,
server: {

url: 'https://.../fp',
process: '/process/',
patch: '/patch/',
...

}
...

});

2.1.6 Advanced Configuration Options

There are some optional additional configuration parameters that can be used to manage other features of the library.
These are detailed in this section.

DJANGO_DRF_FILEPOND_DELETE_UPLOAD_TMP_DIRS (default: True):

When a file is uploaded from a client using filepond, or pulled from a remote URL as a result of a call
to the fetch endpoint from the filepond client, a temporary directory is created for the uploaded/fetched
file to be placed into as a temporary upload. When the temporary upload is subsequently removed, either
because it is cancelled or because it is moved to permanent storage, the file stored as a temporary upload
is removed along with the temporary directory that it is stored in. The approach of creating a temporary
directory named with a unique ID specific to the individual file being uploaded is as described in the
filepond server documentation.

In cases where there are large numbers of temporary uploads being created
and removed, if there is a need to reduce the load on the filesystem, setting
DJANGO_DRF_FILEPOND_DELETE_UPLOAD_TMP_DIRS to False will prevent the tempo-
rary directories from being removed when a temporary upload is deleted. The files within those
directories will still be removed.

NOTE: If you set DJANGO_DRF_FILEPOND_DELETE_UPLOAD_TMP_DIRS to False, you will
need to have some alternative periodic “garbage collection” process in operation to remove all empty

2.1. Configuration 7

https://pqina.nl/filepond/docs/patterns/api/server/#chunk-uploads
https://pqina.nl/filepond/docs/patterns/api/filepond-instance/#server-configuration
https://pqina.nl/filepond/docs/patterns/api/server/#process

django-drf-filepond Documentation

temporary directories in order to avoid a build up of potentially very large numbers of empty directories
on the filesystem.

Using a non-standard element name for your client-side filepond instance:

If you have a filepond instance on your client web page that uses an element name other than the de-
fault filepond, django-drf-filepond can now handle this. For example, if you have multiple filepond
instances on a page, you will need to give each instance a different name. To take advatage of this fea-
ture, you will need to inject an additional parameter fp_upload_field into the HTTP upload request
which provides the name of the filepond form instance to process. An example of this is shown in the
issue describing the request for this feature.

2.1.7 Logging

django-drf-filepond outputs a variety of debug logging messages. You can configure logging for the app through
Django’s logging configuration in your Django application settings.

For example, taking a basic logging configuration such as the first example configuration in Django’s logging doc-
umentation examples, adding the following to the loggers section of the LOGGING configuration dictionary will
enable DEBUG output for all modules in the django_drf_filepond package:

'django_drf_filepond': {
'handlers': ['file'],
'level': 'DEBUG',

},

You can also enable logging for individual modules or set different logging levels for different modules by specifying
the fully qualified module name in the configuration, for example:

'django_drf_filepond.views': {
'handlers': ['file'],
'level': 'DEBUG',
'propagate': False,

},
'django_drf_filepond.models': {

'handlers': ['file'],
'level': 'INFO',
'propagate': False,

},

8 Chapter 2. Installation

https://github.com/ImperialCollegeLondon/django-drf-filepond/issues/4#issue-412361507
https://docs.djangoproject.com/en/2.1/topics/logging/
https://docs.djangoproject.com/en/2.1/topics/settings/
https://docs.djangoproject.com/en/2.1/topics/logging/#examples
https://docs.djangoproject.com/en/2.1/topics/logging/#examples

CHAPTER 3

Using the library

3.1 Working with file uploads

When a file is uploaded from a filepond client, the file is placed into a uniquely named directory within the tem-
porary upload directory specified by the DJANGO_DRF_FILEPOND_UPLOAD_TMP parameter. As per the file-
pond server spec, the server returns a unique identifier for the file upload. In this case, the identifier is a 22-
character unique ID generated using the shortuuid library. This ID is the name used for the directory created un-
der DJANGO_DRF_FILEPOND_UPLOAD_TMP into which the file is placed. At present, the file also has a separate
unique identifier which hides the original name of the file on the server filesystem. The original filename is stored
within the django-drf-filepond app’s database. The use of a unique ID for the stored file name also allows multiple
uploads with the same file name in a single upload session without causing problems with overwriting of files in the
temporary upload directory.

When/if the client subsequently submits the form associated with the filepond instance that triggered the upload, the
unique directory ID will be passed to the server by the client and this can be used to look up the temporary file.

There are two different approaches for handling files that need to be stored permanently on a server after being
uploaded from a filepond client via django-drf-filepond. These two approaches are not mutually exclusive and you can
choose to use one approach for some files and the other approach for other files if you wish.

3.1.1 1. Use django-drf-filepond’s API to store a temporary upload to permanent
storage (recommended)

Note: You must use this approach for storing any files that you subsequently want to access using filepond’s load
function.

Using this approach, the file is stored either to local storage or to a remote storage service depending on the file store
configuration you are using.

9

https://pqina.nl/filepond/docs/patterns/api/server/
https://github.com/skorokithakis/shortuuid

django-drf-filepond Documentation

1.1 store_upload

store_upload stores a temporary upload, uploaded as a result of adding it to the filepond component in a web
page, to permanent storage.

If you have configured django-drf-filepond to use local file storage by setting the
DJANGO_DRF_FILEPOND_FILE_STORE_PATH parameter in your application settings, the file will be stored to a
location under this directory.

If you have configured a remote file store via django-storages, the stored upload will be sent to the configured storage
backend via django-storages.

Parameters:

upload_id: The unique ID assigned to the upload by django-drf-filepond when the file was initially uploaded via
filepond.

destination_file_path: The location where the file should be stored. This location will be appended to
the base file storage location as defined using the DJANGO_DRF_FILEPOND_FILE_STORE_PATH parameter, or,
for remote storage backends, the location configured using the relevant django-storages parameters. If you pass an
absolute path beginning with /, the leading / will be removed. The path that you provide should also include the
target filename.

Returns:

A django_drf_filepond.models.StoredUpload object representing the stored upload.

Raises django.core.exceptions.ImproperlyConfigured if using a local file store and
DJANGO_DRF_FILEPOND_FILE_STORE_PATH has not been set.

Raises ValueError if:

• an upload_id is provided in an invalid format

• the destination_file_path is not provided

• a django_drf_filepond.models.TemporaryUpload record for the provided upload_id is not
found

Example:

from django_drf_filepond.api import store_upload

Given a variable upload_id containing a 22-character unique file upload ID:
su = store_upload(upload_id, destination_file_path='target_dir/filename.ext')
destination_file_path is a relative path (including target filename.
The path will created under the file store directory and the original
temporary upload will be deleted.

1.2 get_stored_upload / get_stored_upload_file_data

Get access to a stored upload and the associated file data.

get_stored_upload: Given an upload_id, return the associated django_drf_filepond.models.
StoredUpload object.

Throws django_drf_filepond.models.StoredUpload.DoesNotExist if a database record doesn’t ex-
ist for the specified upload_id.

get_stored_upload_file_data: Given a StoredUpload object, return the file data for the upload as a Python
file-like object.

10 Chapter 3. Using the library

https://docs.python.org/3/glossary.html#term-file-like-object

django-drf-filepond Documentation

Parameters:

stored_upload: A django_drf_filepond.models.StoredUpload object for which you want retrieve
the file data.

Returns:

Returns a tuple (filename, bytes_io) where filename is a string representing the name of the stored file
being returned and bytes_io is an io.BytesIO object from which the file data can be read. If an error occurs,
raises an exception:

• django_drf_filepond.exceptions.ConfigurationError: Thrown if using a local file store and
DJANGO_DRF_FILEPOND_FILE_STORE_PATH is not set or the specified location does not exist, or is not
a directory.

• FileNotFoundError: Thrown if using a remote file store and the file store API reports that the file doesn’t
exist. If using a local file store, thrown if the file does not exist or the location is a directory and not a file.

• IOError: Thrown if using a local file store and reading the file fails.

Example:

from django_drf_filepond.api import get_stored_upload
from django_drf_filepond.api import get_stored_upload_file_data

Given a variable upload_id containing a 22-character unique
upload ID representing a stored upload:
su = get_store_upload(upload_id)
(filename, bytes_io) = get_store_upload_file_data(su)
file_data = bytes_io.read()

1.3 delete_stored_upload

delete_stored_upload deletes a stored upload record and, optionally, the associated file that is stored on either
a local disk or a remote file storage service.

Parameters:

upload_id: The unique ID assigned to the upload by django-drf-filepond when the file was initially uploaded via
filepond.

delete_file: True to delete the file associated with the record, False to leave the file in place.

Returns:

Returns True if the stored upload is deleted successfully, otherwise raises an exception:

• django_drf_filepond.models.StoredUpload.DoesNotExist exception if no upload exists for
the specified upload_id.

• django_drf_filepond.exceptions.ConfigurationError: Thrown if using a local file store and
DJANGO_DRF_FILEPOND_FILE_STORE_PATH is not set or the specified location does not exist, or is not
a directory.

• FileNotFoundError: Thrown if using a remote file store and the file store API reports that the file doesn’t
exist. If using a local file store, thrown if the file does not exist or the location is a directory and not a file.

• OSError: Thrown if using a local file store and the file deletion fails.

Example:

3.1. Working with file uploads 11

django-drf-filepond Documentation

from django_drf_filepond.api import delete_stored_upload

Given a variable upload_id containing a 22-character unique
upload ID representing a stored upload:
delete_stored_upload(upload_id, delete_file=True)
delete_file=True will delete the file from the local
disk or the remote storage service.

3.1.2 2. Manual handling of file storage

Using this approach, you move the file initially stored as a temporary upload by django-drf-filepond to a storage
location of your choice and the file then becomes independent of django-drf-filepond. The following example shows
how to lookup a temporary upload given its unique upload ID and move it to a permanent storage location. The
temporary upload record is then deleted and django-drf-filepond no longer has any awareness of the file:

import os
from django_drf_filepond.models import TemporaryUpload

Get the temporary upload record
tu = TemporaryUpload.objects.get(upload_id='<22-char unique ID>')

Move the file somewhere for permanent storage
The file will be saved with its original name
os.rename(tu.get_file_path(), '/path/to/permanent/location/%s' % tu.upload_name)

Delete the temporary upload record and the temporary directory
tu.delete()

12 Chapter 3. Using the library

CHAPTER 4

Tutorial

This tutorial will walk you through the process of creating a basic Django application that provides server-side func-
tionality for filepond using the django-drf-filepond app.

A simple demo web page filepond-jquery-example.html is provided for you to use as a test front-end for the demo
Django application built in this tutorial. The web page uses filepond’s jQuery adapter, loaded from a CDN, and is
based on the Bootstrap library’s starter template.

Note: This tutorial is in two parts:

Part A focuses on setting up a simple Django application to demonstrate basic use of django-drf-filepond. It uses local
file storage (via some form of locally mounted storage on the host computer) for temporary uploads and stored files.

Part B, an advanced section at the end of the tutorial details the use of the remote file storage capabilities provided by
django-drf-filepond via integration with the django-storages library.

Warning: The example given in this tutorial is purely to demonstrate how to use the django-drf-filepond API and
to help you get started with using the library’s features.

The example application built here does not address security aspects of using either local or remote file storage and
you should pay particular care to this when building your own applications using django-drf-filepond.

For example, when using the django-storages S3 backend (see tutorial section B2), a number of parameters are
provided to help configure security of the uploaded files and the bucket used for file storage. You should, for
example, look at the various ACL options provided in the django-storages S3 documentation.

4.1 Tutorial Part A: Building a basic Django application that uses
django-drf-filepond

13

https://pqina.nl/filepond/
https://github.com/ImperialCollegeLondon/django-drf-filepond
https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/filepond-jquery-example.html
https://getbootstrap.com/
https://getbootstrap.com/docs/4.1/examples/starter-template/
https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html

django-drf-filepond Documentation

Note: This tutorial assumes that you are using Python 3 and have virtualenv installed

The tutorial will walk you through the following steps:

1. Set up your environment - prepare an environment in which to undertake the tutorial

2. Creating the Django application - create a simple django application configured to include the django-drf-
filepond app

3. Add the front-end demo web page

4. Test the service

4.1.1 A1. Set up your environment

Create a directory in which to undertake this tutorial. For example, in your home directory, create the directory
drf-filepond-tutorial

We’ll refer to this directory as ${TUTORIAL_DIR} throughout the rest of the tutorial. If you’re using a Linux or
Mac OS platform with a bash shell (or a Windows-based environment that provides a bash shell such as WSL or the
Git BASH shell provided with Git for Windows) you can set the environment variable TUTORIAL_DIR to point the
tutorial directory, for example:

$ export TUTORIAL_DIR=$HOME/drf-filepond-tutorial

In ${TUTORIAL_DIR}, create a file named requirements.txt containing the following content:

Django>=1.11
django-drf-filepond

Now create a virtualenv in ${TUTORIAL_DIR}:

$ virtualenv --prompt=drf-filepond-tutorial env
$ source env/bin/activate

Your shell prompt should now have been modified to show [drf-filepond-tutorial]which shows that you’re
within the virtual environment.

You can now install the dependencies:

$ pip install -r requirements.txt

4.1.2 A2: Creating the Django application

In ${TUTORIAL_DIR} with the virtualenv created in step 1 activated, use the django-admin command to create a
new django project:

$ django-admin startproject drf_filepond_tutorial .

You should now see a manage.py file in your current directory as well as a drf_filepond_tutorial directory
containing some Python source files.

As described in the Configuration section of the django-drf-filepond documentation, we’ll now add the django-drf-
filepond app to our Django project and then create the database to support this app and other default functionality
within the Django project.

Open the file ${TUTORIAL_DIR}/drf_filepond_tutorial/settings.py in an editor.

At the end of the INSTALLED_APPS section, add 'django_drf_filepond':

14 Chapter 4. Tutorial

https://virtualenv.pypa.io/en/latest/
https://docs.microsoft.com/en-us/windows/wsl
https://gitforwindows.org/

django-drf-filepond Documentation

INSTALLED_APPS = [
...

'django.contrib.staticfiles',
'django_drf_filepond',

]

At the end of the file add a new configuration parameter:

DJANGO_DRF_FILEPOND_UPLOAD_TMP = os.path.join(BASE_DIR, 'filepond-temp-uploads')

Save and close the settings.py file.

Now open the ${TUTORIAL_DIR}/drf_filepond_tutorial/urls.py file.

After the two existing import statements, add a new import statement:

from django.conf.urls import url, include

There should now be three import statements at the top of the urls.py file.

To the urlpatterns list, add an additional entry to link in the filepond server URLs such that the urlpatterns
now look as follows:

urlpatterns = [
path('admin/', admin.site.urls),
url(r'^fp/', include('django_drf_filepond.urls')),

]

You can now create the database by running:

$ python manage.py migrate

4.1.3 A3. Add the front-end demo web page

We now have a very basic, but fully-configured Django project that will act as a server for filepond. In order to test
this, we need a filepond client.

The filepond-jquery-example.html file in the docs/tutorial/ directory of the django-drf-filepond GitHub repos-
itory provides a simple single-page filepond client using filepond’s jQuery adapter.

We can now set up our Django project to serve this HTML file as a static file and use it to test the server-side filepond
support.

NOTE: This approach uses Django’s static file serving support and it should not be used for production deploy-
ment.

Create a directory called static in ${TUTORIAL_DIR}.

Place the filepond-jquery-example.html file in this directory.

Now open the ${TUTORIAL_DIR}/drf_filepond_tutorial/urls.py file for editing. We’ll add a new
URL mapping to allow access to static files placed into the ${TUTORIAL_DIR}/static/. Add the following
entry to the urlpatterns list:

url(r'^demo/(?P<path>.*)$', serve, {'document_root': os.path.join(settings.BASE_DIR,
→˓'static')}),

You will also need to add 3 new import statements to the set of existing import statements:

4.1. Tutorial Part A: Building a basic Django application that uses django-drf-filepond 15

https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/filepond-jquery-example.html
https://github.com/ImperialCollegeLondon/django-drf-filepond
https://github.com/ImperialCollegeLondon/django-drf-filepond
https://github.com/pqina/jquery-filepond
https://docs.djangoproject.com/en/2.1/howto/static-files/#serving-static-files-during-development

django-drf-filepond Documentation

import os
from django.views.static import serve
from django.conf import settings

4.1.4 A4. Test the service

You are now in a position to test the project that you’ve set up.

In the ${TUTORIAL_DIR} directory, with the virtualenv that was created in step 1 activated, start the Django devel-
opment server:

$ python manage.py runserver

If there are any errors with your configuration, these will be shown in the terminal when you attempt to start the
development server.

You should now be able to open the demo page in your browser. Point the browser to http://localhost:8000/demo/
filepond-jquery-example.html and you should see the demo page shown in the figure below:

You can now try uploading a file to the server. Drag and drop a file onto the grey filepond panel on the
web page or click Browse and select a file. The file should be uploaded successfully. If you look in the
${TUTORIAL_DIR}/filepond-temp-uploads directory, the directory we set as the temporary upload direc-
tory using the DJANGO_DRF_FILEPOND_UPLOAD_TMP parameter in part A2 above, you will see that the file has
been uploaded to this location and placed in a directory named using a unique ID. The file is also saved using a unique
ID to replace it’s original filename, which is preserved in the database. If you click the ‘X’ icon for the uploaded file

16 Chapter 4. Tutorial

http://localhost:8000/demo/filepond-jquery-example.html
http://localhost:8000/demo/filepond-jquery-example.html

django-drf-filepond Documentation

that appears alongside the “Upload complete” message, the temporary upload is cancelled and you should be able to
verify that the file has now disappeared from the ${TUTORIAL_DIR}/filepond-temp-uploads directory.

You can also test programmatically uploading a file from a remote URL. You can use your browser’s developer console
while on the django-drf-filepond demo page to call the filepond object’s addFile method to get filepond to retrieve the
file and add it. Place a test text file with some content in it into the ${TUTORIAL_DIR}/static/ directory. Call
the file test.txt.

In your browser console, enter the following JavaScript code:

testFile = null;
result = $('.pond').filepond('addFile', 'http://localhost:8000/demo/test.txt').then(

function(file) { testFile = file; }
);

You will now see that the value of testFile.serverId contains the ID generated for the upload from the URL.
The file upload should have appeared in the filepond panel in the webpage and it can be cancelled by clicking the
cancel button in the UI in the same way as a file uploaded from the local system by browsing or drag and drop.

4.1.5 Chunked file uploads

If you’d like to test the use of chunked file uploads, you can modify the filepond-jquery-example.html file to include the
necessary configuration to enable chunked uploads as described in the “Chunked uploads” section of the “Installation”
part of the main django-drf-filepond documentation.

4.2 Tutorial Part B: Using remote file storage

django-drf-filepond’s remote file storage functionality enables you to place stored uploads on a remote file store. You
can then use filepond’s load endpoint to load a stored file directly from the remote storage. You can make use of any
of the storage backends supported by django-storages. This includes, for example, Amazon S3 or Azure Storage.

Note: Remote storage is currently only supported for stored uploads. Temporary uploads are still stored locally in the
location defined by the DJANGO_DRF_FILEPOND_UPLOAD_TMP parameter in your Django application’s settings.

It is planned to add remote storage for temporary uploads in a future release.

This section of the tutorial assumes that you have completed part A and builds on the Django application developed
there. To support this part of the tutorial, a separate demo HTML page is provided. This HTML file (filepond-jquery-
example-advanced.html) includes a more advanced design to demonstrate the storage and retrieval of uploads and also
the removal of stored uploads.

Note: Not all features detailed here are supported on all django-storages backends. Support depends directly on
whether django-storages provides support for a given feature. For example, if django-storages doesn’t support file
deletion for a particular storage backend, django-drf-filepond will not support file deletion for that platform.

4.2.1 B1. Add a new web interface and REST endpoint to the demo app

Part B of the tutorial begins with updating the demo application that you set up in part A with a new HTML page,
filepond-jquery-example-advanced.html, that contains a more advanced interface with additional functionality. Ob-

4.2. Tutorial Part B: Using remote file storage 17

https://pqina.nl/filepond/docs/patterns/api/filepond-instance/#methods
https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/filepond-jquery-example.html
https://pqina.nl/filepond/docs/patterns/api/server/#load
https://django-storages.readthedocs.io/en/latest/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-gb/services/storage/
https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/filepond-jquery-example-advanced.html
https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/filepond-jquery-example-advanced.html
https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/filepond-jquery-example-advanced.html

django-drf-filepond Documentation

tain the HTML file directly from GitHub or copy it from your clone of the django-drf-filepond repository into the
${TUTORIAL_DIR}/static/ directory.

As demonstrated in part A of the tutorial, the initial upload of a file, where it is uploaded to the server as a temporary
upload and shown in green within the filepond component, is handled directly by the filepond server API as imple-
mented by django-drf-filepond. In the case of the temporary upload, this is handled by the process endpoint. After
one or more files have been uploaded, when the form containing the filepond component is submitted, this must be
handled by your application rather than by django-drf-filepond. In the case of this tutorial, the drf-filepond-tutorial
app needs to handle the submission of the form that triggers the permanent storage of the file upload.

filepond-jquery-example-advanced.html contains an HTML form in which the filepond component is
embedded. Clicking the “Store uploads” button triggers submission of the form. This form submission is handled by
a view in the drf_filepond_tutorial app. In part A of the tutorial, there were no views within the drf_filepond_tutorial
app itself. File uploads were handled by the views provided by django-drf-filepond. We now need a view in the
drf_filepond_tutorial app to handle the form submission. A views.py file containing the implementation of a view
class to handle requests from the web page is provided in the docs/tutorial directory of the django-drf-filepond
repository.

Copy docs/tutorial/views.py from your clone of the django-drf-filepond repository and place it in
${TUTORIAL_DIR}/drf_filepond_tutorial/.

Alternatively, download views.py directly from GitHub and place it in the ${TUTORIAL_DIR}/
drf_filepond_tutorial/ directory.

It is now necessary to modify ${TUTORIAL_DIR}/drf_filepond_tutorial/urls.py to link an endpoint
URL to the form processing view in views.py. Add the following entry to the urlpatterns list in urls.py:

url(r'^submitForm/$', views.SubmitFormView.as_view(), name='submit_form'),

and add the following additional import statement below the existing import statements towards the top of the top of
the urls.py file:

from drf_filepond_tutorial import views

This will ensure that all incoming requests to the /submitForm/ URL are handled by the SubmitFormView
class in the views.py file that you just added.

4.2.2 B2. Configure your storage backend

A Django class-based view is now in place that will handle calling the django-drf-filepond API to store a temporary
upload to remote storage. However, at this stage we don’t have any configuration in place to tell django-drf-filepond
which storage backend to use and the settings for communicating with that backend and authenticating with it.

The storage backends provided by django-storages each include a number of configuration options. This includes a
way to define the base location on the remote storage platform where files should be stored.

Note: If you have extended your demo app from part A before starting this part of the tutorial
and have added the DJANGO_DRF_FILEPOND_FILE_STORE_PATH setting into your ${TUTORIAL_DIR}/
drf_filepond_tutorial/settings.py file, you should set it to None or remove it altogether from the
settings file since this parameter is not used for remote file storage.

We’ll now add some storage backend settings to settings.py. For the example here, we’ll use the Amazon S3
storage backend in django-storages to talk to the open source, Amazon S3-compatible MinIO storage service. You can
download and run MinIO within a docker container on your local system or you can use the same approach detailed
here to target Amazon S3 directly.

18 Chapter 4. Tutorial

https://raw.githubusercontent.com/ImperialCollegeLondon/django-drf-filepond/master/docs/tutorial/filepond-jquery-example-advanced.html
https://pqina.nl/filepond/docs/patterns/api/server/
https://raw.githubusercontent.com/ImperialCollegeLondon/django-drf-filepond/master/docs/tutorial/views.py
https://min.io/

django-drf-filepond Documentation

To begin with, it will be necessary to add additional dependencies required by django-storages. The basic django-
storages library is a required dependency of django-drf-filepond but different storage backends may have additional
dependencies that need to be installed. These additional dependencies can be installed using the pip package manager.
For details of any additional dependencies required by a given backend you can look in the extras_require
section of the django-storages setup.py file. This shows, for example, that the sftp backend requires the paramiko
library. boto3 is the library used for accessing Amazon Web Services and we’ll require boto3 to be installed to use
the Amazon S3 storage backend in this example.

Ensuring that you have first activated the Python virtualenv virtual environment (set up in section A1 of the tutorial)
in your terminal, install boto3 as follows:

$ pip install boto3

The django-storages documentation for the Amazon S3 backend details the various configuration settings that are
available.

django-drf-filepond requires that, for a remote storage backend, you set the
DJANGO_DRF_FILEPOND_STORAGES_BACKEND parameter in your settings.py file. The value to use for
this parameter is the same as value shown in the django-storages documentation for the DEFAULT_FILE_STORAGE
setting for a given storage backend. For example, for the Amazon S3 backend, this would be 'storages.
backends.s3boto3.S3Boto3Storage'. For Azure Storage, the value would be 'storages.backends.
azure_storage.AzureStorage'. Set the parameter in your drf-filepond-tutorial ${TUTORIAL_DIR}/
drf_filepond_tutorial/settings.py file as follows:

DJANGO_DRF_FILEPOND_STORAGES_BACKEND = 'storages.backends.s3boto3.S3Boto3Storage'

You now need to add a number of django-storages-specific parameters to configure the S3 backend. For targeting a
local MinIO deployment, running over SSL with a valid SSL server certificate, we use the following parameters (note
that you’ll need to modify some of the values to match your own MinIO or S3 settings):

AWS_ACCESS_KEY_ID = '<Your MinIO access key>'
AWS_SECRET_ACCESS_KEY = '<Your MinIO secret key>'
AWS_STORAGE_BUCKET_NAME = 'drf-filepond-tutorial'
AWS_AUTO_CREATE_BUCKET = True
AWS_S3_ENDPOINT_URL = 'https://myminio.local:9000'

With this configuration, when you first attempt to store a temporary upload, a bucket named drf-filepond-tutorial will
be created in MinIO, if it is not already present, and your stored upload will be placed in that bucket, prefixed with any
relative path location provided in the code that stores the upload.

If you wish to target Amazon S3 directly, a couple of changes to the above settings will be required, the following set
of settings will allow you to store uploads to S3:

AWS_ACCESS_KEY_ID = '<Your AWS access key>'
AWS_SECRET_ACCESS_KEY = '<Your AWS secret key>'
AWS_STORAGE_BUCKET_NAME = 'drf-filepond-tutorial'
AWS_AUTO_CREATE_BUCKET = True
AWS_S3_REGION_NAME = 'eu-west-1' # Set to your chosen storage region

As mentioned above, you can find the full set of available S3 configuration options in the django-storages S3 docu-
mentation.

Warning: Avoid storing your AWS/MinIO credentials directly in your configuration file. Be very careful to
ensure that your settings file containing private credentials is not unintentionally committed to a code repository,
especially a public repository!

4.2. Tutorial Part B: Using remote file storage 19

https://github.com/jschneier/django-storages/blob/master/setup.py
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html
https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html
https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html

django-drf-filepond Documentation

There are various options for avoiding placing credentials directly in configuration files and many discussions
online of methods. This blog post provides some useful examples and ideas.

4.2.3 B3: Testing the updated service

Ensure that you have an open terminal in which you have activated the Python virtual environment that you created in
tutorial section A1.

If you have stopped the Django development server that was started in part A of the tutorial, you should restart it now
by running the following in a shell in the ${TUTORIAL_DIR} directory:

$ python manage.py runserver

Assuming that the server starts successfully and there are no errors, you should now be able to open the advanced
demo page in your browser. Point the browser to http://localhost:8000/demo/filepond-jquery-example-advanced.html
and you should see the advanced demo page shown in the figure below:

Drag and drop a file onto the grey filepond component panel or click Browse to select a file to upload. It is recom-
mended that you add a png or jpeg image file with the extension .png or .jpg for the purpose of the example in this
tutorial. The file should upload successfully and the Store uploads button should become active.

20 Chapter 4. Tutorial

https://medium.com/poka-techblog/the-best-way-to-store-secrets-in-your-app-is-not-to-store-secrets-in-your-app-308a6807d3ed
http://localhost:8000/demo/filepond-jquery-example-advanced.html

django-drf-filepond Documentation

If you now click the Store uploads button, this will make a request (containing one or more unique IDs representing
the filepond temporary upload(s)) to the web application’s /submitForm URL and this will then be handled by the
relevant function in the view class defined in the views.py file that you added to the application in section B1.

Assuming that your configuration is correct and the request is successful, you should then see the file you uploaded
appear in the Stored uploads section of the page. If you uploaded a png or jpeg image file, the demo page will make a
request to the django-drf-filepond load endpoint to retrieve the file from the remote storage platform and display it as
a preview. If you see the image displayed, then your link to the remote storage platform is fully operational.

You can verify this by using MinIO or S3’s web-based console to check that the file you stored has been correctly
uploaded to the remote platform.

If you now click the Delete stored upload button, this will DELETE THE FILE from the remote storage platform. You
should now be able to verify that the file has been removed from the remote storage platform.

Note: There is a known issue with file deletion on storage platforms that are based on a standard filesystem, for
example django-storages SFTP backend.

When a file is deleted, using the API, the file itself is removed but any directories created to store the file at the full
path specified when storing the file are left in place. This was a design decision since there is currently no way to
know exactly which directories were created when the upload was stored so removing an arbitrary set of directories
on a remote filesystem was not considered a reasonable approach.

If there is demand for use of the SFTP backend, there is scope to store in the database details of created directories
and then remove these if they’re empty when a file is removed.

This completes the advanced section of the django-drf-filepond tutorial. If you require assistance with using the
django-drf-filepond API to store files to a remote storage backend, take a look at the code in the example views.py file
provided with the tutorial.

4.2. Tutorial Part B: Using remote file storage 21

https://github.com/ImperialCollegeLondon/django-drf-filepond/blob/master/docs/tutorial/views.py

	Introduction
	Installation
	Configuration

	Using the library
	Working with file uploads

	Tutorial
	Tutorial Part A: Building a basic Django application that uses django-drf-filepond
	Tutorial Part B: Using remote file storage

